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Bridging with the Microscopic World 1

|H

* |n the course, so far we have studied “small” entities:

electrons, atoms, molecules...

* How do the laws applicable thereto shape the
macroscopically observable
behaviour of matter?
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Outline

* Thermodynamics Memorandum

— Refreshing our memory on basic concepts
(which we will use...)

e The Statistical Mechanics Framework
— Microstates
— Hamiltonian

— Averaging

e Statistical-Mechanical Ensembles
— Microcanonical

— Canonical

— Grand Canonical
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Thermodynamic Description of Systems

* Consider a thermodynamic system, e.g. water at
the triple point in a box...

* “Macroscopic” description in terms of:
Intensive variables:
Temperature (T) Pressure (p)

Chemical potential (u)

Extensive variables:
T=273.16 K
Number of moles/molecules (N) Volume (V) 0 = 6.11657 mbar

Entropy (S)

Thermodynamic potentials:
Internal/Thermal Energy (U)  Enthalpy (H)
Helmholtz free energy (A) Gibbs free energy (G)



Interrelations between Thermodynamic Potentials 5

* Interrelations between these thermodynamic variables:

dU=Tds—pdv+> u dN V)__a I
i=1

U G

@ H P

Natural variables

ouU ouU

OSlv OVls )

 Similar relations hold for the other variables...



Interrelations between Thermodynamic Potentials 6

* Interrelations between these thermodynamic variables:

dU=TdS—pdV+) p dN, v A T

i=1

dH=TdS+Vdp+ ) p dN, U

i=1

dG=-SdT+Vdp+ > p, dN

- S H P
dA=-SdT—pdV+) u dN,

i=1 | A i | |
H=U+PV | e
G=H-TS i | U

Q

A=U-TS=G-PV=H-PV-TS | —




Euler’s Theorem for Extensive Variables

* Euler’s theorem for first-order homogeneous functions:
— If function f satisfies:  f(Ax,,AX,,., A%, )=Af(X;,X,,..., X, )

— Then: f(Xy, Xy, X, ) = ot X

129
~Oox.|

Xjzi

* This can be used for the thermodynamic potentials as
they are indeed first-order homogeneous functions, e.g.:

v=2

8U oU
V S + —| N.
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U=-pV+TS+)> uN



Bridging with the Microscopic World 8

* Within the framework of Chemical Thermodynamics we
can study the interrelation of heat and work with
chemical reactions or with physical changes of state...

* But how are these macroscopic processes, properties
or quantities related to the “molecular world”?
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The Challenge

* Particles (atoms, molecules) obey known laws
(Schrodinger equation, Newton’s laws of motion) with
specified inter-particle interactions...

 What are the observable properties of a system
consisting of a (very) large number of such particles?

* Solving the microscopic equations for O(10%3) is
impossible, but we can invoke statistical arguments...

% P 9 statistical
& %?\gb ¢ Mechanics
SePgdy =
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 The Statistical Mechanics Framework
— Microstates
— Hamiltonian

— Averaging
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Microstates
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Key to these statistical arguments: how frequently a
microstate is visited... but what is a microstate?

Classical description of an ice-cube: é"
. . . . b 9’ «;)
— A microstate s contains all information
about the position and momentum of & 5}1%?
each atom: » %ﬁ“‘g& %
S= (r]_;rz; -;rN;p11p21°°°;pN) ‘_‘b Cﬁ ¢

Quantal description of non-interacting
particles in a (known) potential:

— A microstate s contains all information
about the quantum state of each particle:

s=(n,,n,,...,n,)
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Hamiltonian

The Hamiltonian of a system gives the energy of a
microstate

Classical Hamiltonian of an ice-cube: ?
b B"%
H(s)= Z| | (r 0y eeety) P o ﬁ?»
b
ép
D% 1

Quantal Hamiltonian of non-interacting
particles in a (known) potential:

N
1
H——?lem Vz-l—V( .5, ,rN)
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From Micro to Macro via Averaging

Wandering about the
state/phase space

Macroscopic quantity

% 3 . e
53;?' r, Averaging 1 N @
5 o SPP . I
e ) Gu=26 &
> & /\/ a=1 J

r

3 Nindependent measurements

P, of the system each yielding

value G, for the observable

 Fundamental postulates in Statistical Mechanics:

— Principle of equal weights: microstates with equal energy
are visited with the same frequency

— Ergodic hypothesis: averages over time are equal with
ensemble averages...



Averaging Operations and Ensembles
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* Let us consider the time average of an observable...

and try to partition the sum as follows:

c Z 1 ( Number of times state s, is
> | “~ N | observedin the A" samples

Time average...

ij
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= G, PG =(G)) Ensemble |ng® | | e | -
” average... a.®| |er&®
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“Copies” of a system, each in a
potentially different micro-state...



Ensembles

be P ® & QOSEEW
obs L N I S I T
State s; State s, State s,

Ensemble average... Probability P,  Probability P, Probability P,

* An ensemble is the collection/assembly of all possible
microstates, which the system can visit given some
macroscopic constraints, for example:

— MICROCANONICAL ENSEMBLE: all states with fixed
number of molecules, volume and energy (N, V, E)

— CANONICAL ENSEMBLE: all states with fixed
number of molecules, volume and temperature (N, V, T)

— GRAND CANONICAL ENSEMBLE: all states with fixed
chemical potential, volume and temperature (., V, T)



Outline

16

Statistical-Mechanical Ensembles
— Microcanonical
— Canonical

— Grand Canonical
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Microcanonical Ensemble (N, V, E)

insulation

* All microstates have the same energy = /\/
they are visited with equal probability

"0«
: : e .
* For discrete systems, define the N

degeneracy as:

Q(N,V,E):[

No matter exchange

Number of microstatesj No heat exchange

withN, V and energy E

* Analogously, for continuous systems one can define the
density of states as:

_ Number of microstates with
Q(N,V,E)dE =

N, V and energy betweenE, E+dE
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Microcanonical Ensemble

insulation

 The probability of each microstate is: /\/
1 Dot
P = b
"~ Q(N,V,E) Yy
Notes: No matter exchange

No heat exchange

e States that are not in the ensemble
have probability of zero.

* For continuous systems P, is replaced with a probability
density, but similar equations hold. To keep the discussion
simple we will focus on the discrete case.

How does this help us >
understand the macroscopic world e
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Definition of Entropy

e The microcanonical ensemble allows
us to define entropy as:

S=k, log(Q(N,V,E))

where k; is Boltzmann’s constant:
kg =1.38064852 x 10723 J-K™*
= 8.6173303 x 10—5 ev.K—l Ludwig Eduard Boltzmann

* By the above definition entropy is extensive: if a system
is composed of two independent subsystems A and B:

Q,.=Q,-Q = vl [P P&
AB A= @;3@ GDS)L@@’@/@"
Sps =Kg 108(Q, - Q) =S, +S, ||> ¥4 e &9



Temperature in the Microcanonical Ensemble

* Since all microstates have the same energy in the
microcanonical ensemble, the thermal energyis: U = E

oU
e Recallthat: T = — (see slide 5)
aS VN
* Therefore, the temperature can be calculated from:
-1 6Iog(Q)
ﬁ:(kB .T) —
aE V N

* [3> 0 for macroscopic systems encountered in nature
(for which a classical description is adequate)

* For certain quantum systems [3 can become negative
(see e.g. population inversion in laser physics).
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Pressure in the Microcanonical Ensemble

. , OE
* Since U =E, the pressure is: P = —— (see slide 5)
OV sy
* The volume affects the energy levels! 2 12
n
— e.g. for a quantum particleina 1D box: E_ = >
3mL
wo | | | | | | ] 100 | [ T g A |
-~
80 | | 80 | ﬁ‘v‘v |
; 60 | i ; 60 | . . . i
2 ~ L
%o 40 | J %n 40 | W )
w 0 | % | w 20 | ﬁ‘ |
ol —— | 0 o ———
5 i i’OSitiOlc: (A) i N N ” ” _|530$iti0:')l (A) 5 ° B

* Now that we have S, p, U and T we can calculate any
other thermodynamic quantity (see slides 5, 6)



Canonical Ensemble (N, V, T)
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heat bath

* This ensemble comprises microstates
with fixed volume and number of

o
molecules & 2
CN

0%,
vd

* Energy can fluctuate and the system
is at thermal equilibrium with a heat

bath kept at temperature T

 Heat bath >> system

What is the probability that each ©)

J

microstate is visited in this ensemble e

- _

No matter exchange
Heat exchange

4



Probability Distribution in Canonical Ensemble”

* Consider the system in the canonical ensemble as a
subsystem of a “large system” in the microcanonical

insulation
Total energy of “large system”: E=E +E, Ve 4
Energy of
“large system” system: energy E,
A
. B .B) ... .B) ... State
(51r51) (sl,sz) (sx,sg)
State of -) K- State of heat bath: energy E,
our system heat bath

* Proper combinations of these microstates (i.e. with energies
summing up to E) are indeed valid (accessible) states of the
large system in the microcanonical ensemble...



Probability Distribution in Canonical Ensemble”

* Consider now a different partitioning of these states:

Energy of
our system

.cB .cB .cB .cB .cB .cB .cB) ...
(51,51) (Sl,SZ) (52,547) (52,548) (52,549) (SX’SE) (SX,SE)

* For a moment, fix the system in state y.
Then the accessible states for the large
system are those of the bath, hence:

Q(E,)=Q(E-E,) since E=E, +E, heat bath: enerey E,




Probability Distribution in Canonical Ensemble”

* Consider now a different partitioning of these states:

Energy of
our system

.cB .cB .cB .cB .cB .cB .cB) ...
(51,51) (51'52) (52,547) (52,548) (52,549) (SX’SE) (SX,SE)

* By the principle of equal weights the
probability of state y of the system is:

P, oc Q(E,) = Q(E-E,)

heat bath: energy E;




Probability Distribution in Canonical Ensemble

* So, the probability of state S, in the canonical ensemble:

Degeneracy of bath energy level A more “well-behaved” function...
AL

o, 2 O(E-E,) = exp[log(O(EE, ) ]

Energy of “large system” Energy of state y of system
in microcanonical ensemble in canonical ensemble

* The presence of 2 and E in this equation is inconvenient!
* Since E, is small, introduce a Taylor expansion for log(€2):

dlog(Q
|Og(Q(E—EX)):lOg(Q(E))—EX Og( )+ system: energy E,
oy 210g(Q) g
GE VN heat bath: energy E;
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Canonical Partition Function

Therefore: P, ccexp(—BE, )

Canonical (or Boltzmann) distribution law

Proportionality constant determined
by normalisation condition: pr =1
X

1 :
Hence: P, =4 exp(—BE,) with Q= Zexp(—B E, )
X
— Qs referred to as the “canonical partition function”
— Itis a function of N, V, T (or equivalently N, V, )

— If the partition function of a system is known, one can derive
any thermodynamic quantity!



Thermal Energy in the Canonical Ensemble

* Consider for example the
internal/thermal energy: U=<(E) = ZEXPX
X

Quantity being averaged

Probability of microstate vy,

(E) = —
} Canonical partition function, Q
1 oexp(—BE,) 10 B
D T L N
_ ologQ
(E) = B .
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Calculation of Entropy

* Gibbs provided a general equation for
entropy, valid in fact for any ensemble:

S = —kBZPXIog(PX)
X

* |n the microcanonical ensemble, this
simplifies to Boltzmann’s formula! (slide 19)

Josiah Willard Gibbs
= Homework: prove statement above...

. 1
* In the canonical ensemble: P =— exp(—B EX)

Q
S = —kB%Zexp(—B Ex)[—B E, —Iog(Q)}



Entropy and Helmholtz Free Energy

* Continuing with entropy in the canonical ensemble...

S = —kBéZexp(—B Ex)[—B E, —Iog(Q)} =

S — _kBé[—B ;EX exp(—B EX)—Q|Og(Q)] —

1 ] U
S = —k, —k—TU—Iog(Q) = ?+kBIog(Q) —

B

TS = U+k,Tlog(Q)

e But from thermodynamics we know: A=U-TS (slide 6)

... therefore: A= —-kT log(Q)



Pressure in the Canonical Ensemble
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* Pressure is now easy to calculate, since: —
O lo
-0log(Q)

It affects the energy levels!

— e.g. for a quantum particleina 1D box: E_ =

Energy (eV)

100 |

80 |

60 |

40 |

20 |

0l

= p=k

OA
=P

N,T

oV

-t o™

oV
* The volume doesn’t appear explicitly in Q, but it’s there...

Energy (eV)

100 |

80 |

60 |

40 |

20 |

0l

n” h’
" 8ml’

— N —




Grand Canonical Ensemble (u, V, T)

heat bath, matter reservoir

e Thi ' ' T
| S e.nsemble comprises microstates &;@@‘@5@ )
with fixed volume Fel et G

* Energy and number of molecules can g\aﬁ’/@@@

fluctuate and the system is at @%;gé----'%
thermodynamic equilibrium with rO O T@ E
— a heat bath kept at temperature T Matter exchange

Heat exchange
— a matter reservoir kept at chemical

potential u

 Heat bath & matter reservoir >> system

One can apply a similar reasoning as that for
the canonical ensemble to prove that...



Probability Distribution in Grand Canonical Ensemble

heat bath, matter reservoir
. e —
The probabllljcy in the | 5@*@5@ oz
Grand Canonical Ensemble is: Pl o o

i :% exp(-BE, +BuN,) @*"P@"'ffé%

Matter exchange
Heat exchange

with = :Zexp(—B E, +BMNX)
X

— =2 is referred to as the “grand canonical partition function”
— Itis a function of u, V, T (or equivalently p, V, B)



Number of Particles in Grand Canonical Ensemble

* |n the microcanonical and canonical ensembles, the
number of particles (molecules) was fixed.

* Not the case in grand canonical! How can we find the
average number of particles?

(N) = éZNXexp(—B EX+BHNX) =

—

1 <« Oexp(—BE, +BuN, )
N) = —
= Z ()

Olog(=)
0(Bu)

(N) = ; 6([?“)2%:@('0(_[3 E, +BuN, ) =



Entropy and Pressure in Grand Canonical Ensemble

* Let us calculate the entropy from Gibbs’ formula:

S = —kBZPXIog(PX) —_—

S = —k, 2P, [~log(2)-BE, +BuN,] =

S = —kB[—Iog(E)—ﬁ<E>+Bu<N>] =

Recall: The macroscopic

B — (kBT)_l TS = kBTlog (E) LTU— ]JN V‘/number of molecules

Recalling Euler’s B —
theorem (slide 7): pV = kBTlog(H)



Take Home Messages

e Statistical Mechanics is all about deriving expressions
for familiar macroscopic thermodynamic variables from
microscopic laws (e.g. Schrodinger’s equation or
Newton’s law of motion)

 Two fundamental postulates:
— Principle of equal weights...
— Ergodic hypothesis...

* Averaging makes use of ensembles. Commonly used:
— Microcanonical (N, V, E)
— Canonical (N, V, T)
— Grand canonical (u, V, T)

 Macroscopically, all ensembles give “same answers”...
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