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Bridging with the Microscopic World 1

• In the course, so far we have studied “small” entities: 
electrons, atoms, molecules…

• How do the laws applicable thereto shape the 
macroscopically observable 
behaviour of matter?
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Outline 2

• Thermodynamics Memorandum
– Refreshing our memory on basic concepts 

(which we will use…)

• The Statistical Mechanics Framework 
– Microstates

– Hamiltonian 

– Averaging

• Statistical-Mechanical Ensembles
– Microcanonical

– Canonical

– Grand Canonical
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Thermodynamic Description of Systems 4

• Consider a thermodynamic system, e.g. water at 
the triple point in a box…

• “Macroscopic” description in terms of:
Intensive variables:
Temperature (T) Pressure (p)
Chemical potential (µ)

Extensive variables:
Number of moles/molecules (N) Volume (V)
Entropy (S)

Thermodynamic potentials:
Internal/Thermal Energy (U) Enthalpy (H)
Helmholtz free energy (A) Gibbs free energy (G)

T = 273.16 K
p = 6.11657 mbar
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Interrelations between Thermodynamic Potentials
5

• Interrelations between these thermodynamic variables:
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• Similar relations hold for the other variables…



Interrelations between Thermodynamic Potentials
6

• Interrelations between these thermodynamic variables:
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Euler’s Theorem for Extensive Variables

• Euler’s theorem for first-order homogeneous functions:
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– If function f satisfies:

– Then: 
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• This can be used for the thermodynamic potentials as 
they are indeed first-order homogeneous functions, e.g.:
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Bridging with the Microscopic World 8

• Within the framework of Chemical Thermodynamics we 
can study the interrelation of heat and work with 
chemical reactions or with physical changes of state…

• But how are these macroscopic processes, properties 
or quantities related to the “molecular world”?

?



The Challenge

• Particles (atoms, molecules) obey known laws 
(Schrodinger equation, Newton’s laws of motion) with 
specified inter-particle interactions…

• What are the observable properties of a system 
consisting of a (very) large number of such particles?

• Solving the microscopic equations for (1023) is 
impossible, but we can invoke statistical arguments…

9

Statistical 
Mechanics
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Microstates

• Key to these statistical arguments: how frequently a 
microstate is visited… but what is a microstate?
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( ), ,..., ; , ,...,≡ 1 2 N 1 2 Ns r r r p p p

• Quantal description of non-interacting 
particles in a (known) potential:
– A microstate s contains all information 

about the quantum state of each particle:

( ), ,...,≡ 1 2 Ns n n n

• Classical description of an ice-cube:
– A microstate s contains all information 

about the position and momentum of 
each atom:



Hamiltonian

• The Hamiltonian of a system gives the energy of a 
microstate

12
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• Quantal Hamiltonian of non-interacting 
particles in a (known) potential:
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• Classical Hamiltonian of an ice-cube:



From Micro to Macro via Averaging 13

Wandering about the 
state/phase space

Averaging

r1

r2

r3…
p1

p2

p3
…

obs
1

1G Gα
α=

= ∑




Macroscopic quantity

• Fundamental postulates in Statistical Mechanics:
– Principle of equal weights: microstates with equal energy 

are visited with the same frequency
– Ergodic hypothesis: averages over time are equal with 

ensemble averages…

 independent measurements 
of the system each yielding 
value Gα for the observable 



Averaging Operations and Ensembles 14

• Let us consider the time average of an observable…
and try to partition the sum as follows:

obs
1

1G Gα
α=

= ∑




obsG P G Gχ χ
χ

⇒ = =∑ Ensemble 
average…

Time

O
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e

Time average…

…

“Copies” of a system, each in a 
potentially different micro-state…

Number of times state is1 G
observed in the samples χ

χ

 
=  

 
∑ χs
 



Ensembles

• An ensemble is the collection/assembly of all possible 
microstates, which the system can visit given some 
macroscopic constraints, for example:
– MICROCANONICAL ENSEMBLE: all states with fixed 

number of molecules, volume and energy (N, V, E)
– CANONICAL ENSEMBLE: all states with fixed 

number of molecules, volume and temperature (N, V, T)
– GRAND CANONICAL ENSEMBLE: all states with fixed 

chemical potential, volume and temperature (µ, V, T)

15

obsG P G Gχ χ
χ

= =∑ …

State s1
Probability P1

State s2
Probability P2

State sχ
Probability PχEnsemble average…
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Microcanonical Ensemble (N, V, E)

• All microstates have the same energy ⇒
they are visited with equal probability

• For discrete systems, define the 
degeneracy as:

17

insulation

No matter exchange
No heat exchange

( )
Number of microstates

N,V,E
with N, V and energy E
 

Ω =  
 

( )
Number of microstates with

N,V,E dE
N, V and energy between E, E dE
 

Ω =  + 

• Analogously, for continuous systems one can define the 
density of states as:



Microcanonical Ensemble

• The probability of each microstate is:

18

insulation

No matter exchange
No heat exchange

( )
1P

N,V,Eχ = Ω

Notes: 
• States that are not in the ensemble 

have probability of zero.
• For continuous systems Pχ is replaced with a probability 

density, but similar equations hold. To keep the discussion 
simple we will focus on the discrete case.

How does this help us 
understand the macroscopic world



Definition of Entropy

• The microcanonical ensemble allows 
us to define entropy as:

19

( )( )BS k log N,V,E= Ω

Ludwig Eduard Boltzmann 

where kB is Boltzmann’s constant:
kB = 1.38064852 × 10−23 J⋅K−1

= 8.6173303 × 10−5 eV⋅K−1

• By the above definition entropy is extensive: if a system 
is composed of two independent subsystems A and B:

( )
AB A B

AB B A B A BS k log S S
Ω =Ω ⋅Ω ⇒

= Ω ⋅Ω = +



Temperature in the Microcanonical Ensemble

• Since all microstates have the same energy in the 
microcanonical ensemble, the thermal energy is: U = E

20

• Therefore, the temperature can be calculated from:

( )
( )1

B
V,N

logk T
E

− ∂ Ω
β = ⋅ =

∂

• For certain quantum systems β can become negative 
(see e.g. population inversion in laser physics).

∂
=

∂ V,N

UT
S

• Recall that: (see slide 5)

• β > 0 for macroscopic systems encountered in nature 
(for which a classical description is adequate)



Pressure in the Microcanonical Ensemble

• Since U = E, the pressure is:

21

• Now that we have S, p, U and T we can calculate any 
other thermodynamic quantity (see slides 5, 6)

∂
= −

∂ S,N

Ep
V

(see slide 5)
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n hE
8 m L

=
• The volume affects the energy levels!

– e.g. for a quantum particle in a 1D box:



Canonical Ensemble (N, V, T) 22

• This ensemble comprises microstates 
with fixed volume and number of 
molecules

• Energy can fluctuate and the system 
is at thermal equilibrium with a heat 
bath kept at temperature T

• Heat bath >> system

heat bath

No matter exchange
Heat exchange

What is the probability that each 
microstate is visited in this ensemble



Probability Distribution in Canonical Ensemble23

• Consider the system in the canonical ensemble as a 
subsystem of a “large system” in the microcanonical

heat bath: energy EB

BE E Eχ= + insulationTotal energy of “large system”:

system: energy Eχ

( ); B
1 1s s ( ); B

1 2s s ( ); B
χ ξs s

Energy of 
“large system”

State

E  

 

State of 
our system

State of 
heat bath

• Proper combinations of these microstates (i.e. with energies 
summing up to E) are indeed valid (accessible) states of the 
large system in the microcanonical ensemble…



• For a moment, fix the system in state χ. 
Then the accessible states for the large 
system are those of the bath, hence:

Probability Distribution in Canonical Ensemble24

• Consider now a different partitioning of these states: 

Bsince E E Eχ= +( ) ( )BE E EχΩ =Ω −

( ); B
1 1s s ( ); B

1 2s s

Energy of 
our system

State

Eχ





E2

E1

( ); B
2 47s s 



( ); B
2 48s s ( ); B

2 49s s

system: energy Eχ

heat bath: energy EB

( ); B
χ ξs s ( ); B

χ ξs s







• By the principle of equal weights the 
probability of state χ of the system is:

Probability Distribution in Canonical Ensemble25

• Consider now a different partitioning of these states: 

( ) ( )BP E E Eχ χ∝ Ω = Ω −

( ); B
1 1s s ( ); B

1 2s s

Energy of 
our system

State

Eχ





E2

E1

( ); B
2 47s s 



( ); B
2 48s s ( ); B

2 49s s

system: energy Eχ

heat bath: energy EB

( ); B
χ ξs s ( ); B

χ ξs s







Probability Distribution in Canonical Ensemble26

• So, the probability of state sχ in the canonical ensemble:

( )P E Eχ χ∝Ω −

system: energy Eχ

heat bath: energy EB

Energy of state χ of system 
in canonical ensemble

Energy of “large system” 
in microcanonical ensemble

Degeneracy of bath energy level

• The presence of Ω and E in this equation is inconvenient!
• Since Eχ is small, introduce a Taylor expansion for log(Ω):

( )( ) ( )( ) ( )dloglog E E log E E ...
dEχ χ

Ω
Ω − = Ω − +

( )( )exp log E Eχ = Ω − 

A more “well-behaved” function…

( )

V,N

logbut
E

∂ Ω
=β

∂



Canonical Partition Function 27

• Therefore: ( )P exp Eχ χ∝ −β

Canonical (or Boltzmann) distribution law

• Proportionality constant determined 
by normalisation condition: P 1χ

χ

=∑

( ) ( )1P exp E with Q exp E
Qχ χ χ

χ

= −β = −β∑• Hence:

– Q is referred to as the “canonical partition function” 
– It is a function of N, V, T (or equivalently N, V, β)
– If the partition function of a system is known, one can derive 

any thermodynamic quantity!



Quantity being averaged

Probability of microstate χ
( )

( )

E exp E
E

exp E

χ χ
χ

ζ
ζ

−β
=

−β

∑
∑

Thermal Energy in the Canonical Ensemble 28

• Consider for example the 
internal/thermal energy: U E E Pχ χ

χ

= = ∑

Canonical partition function, Q
⇒

( )
( )

exp E1E
Q

χ

χ

∂ −β
=

∂ −β∑

N,V

logQE ∂
= −

∂β

( )1 exp E
Q χ

χ

∂
= − −β

∂β∑ ⇒



Calculation of Entropy 29

• Gibbs provided a general equation for 
entropy, valid in fact for any ensemble:

( )BS k P log Pχ χ
χ

= − ∑

Josiah Willard Gibbs

• In the microcanonical ensemble, this 
simplifies to Boltzmann’s formula! (slide 19)

 Homework: prove statement above…

( ) ( )B
1S k exp E E log Q
Q χ χ

χ

= − −β −β −  ∑

• In the canonical ensemble: ( )1P exp E
Qχ χ= −β



Entropy and Helmholtz Free Energy

• Continuing with entropy in the canonical ensemble…

30

( ) ( )B
1S k exp E E log Q
Q χ χ

χ

= − −β −β −  ∑

( )BT S U k T log Q= +

⇒

( ) ( )B
1S k E exp E Q log Q
Q χ χ

χ

 = − −β −β −
  

∑ ⇒

( ) ( )B B
B

1 US k U log Q k log Q
k T T

 = − − − = +  
⇒

A U T S= −• But from thermodynamics we know:

… therefore: ( )BA k T log Q= −

(slide 6) 
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Pressure in the Canonical Ensemble

• Pressure is now easy to calculate, since:

31

N,T

A p
V

∂
= −

∂
( )

B
log Qp k T

V
∂

=
∂

• The volume doesn’t appear explicitly in Q, but it’s there… 
It affects the energy levels!
– e.g. for a quantum particle in a 1D box:

⇒

2 2

n 2

n hE
8 m L

=



Grand Canonical Ensemble (µ, V, T)
32

• This ensemble comprises microstates 
with fixed volume

• Energy and number of molecules can 
fluctuate and the system is at 
thermodynamic equilibrium with 
– a heat bath kept at temperature T
– a matter reservoir kept at chemical 

potential µ

heat bath, matter reservoir

Matter exchange
Heat exchange

• Heat bath & matter reservoir >> system

One can apply a similar reasoning as that for 
the canonical ensemble to prove that…



Probability Distribution in Grand Canonical Ensemble

• The probability in the 
Grand Canonical Ensemble is:

33

( )

( )

1P exp E N

with exp E N

χ χ χ

χ χ
χ

= −β +βµ
Ξ

Ξ = −β +βµ∑

– Ξ is referred to as the “grand canonical partition function” 
– It is a function of µ, V, T (or equivalently µ, V, β)

heat bath, matter reservoir

Matter exchange
Heat exchange



Number of Particles in Grand Canonical Ensemble

• In the microcanonical and canonical ensembles, the 
number of particles (molecules) was fixed.

• Not the case in grand canonical! How can we find the 
average number of particles?

34

( )1N N exp E Nχ χ χ
χ

= −β +βµ
Ξ ∑

( )
( )

exp E N1N χ χ

χ

∂ −β +βµ
=
Ξ ∂ βµ∑

⇒

⇒

( ) ( )1N exp E Nχ χ
χ

∂
= −β +βµ
Ξ ∂ βµ ∑

( )

( )
log∂ Ξ

=
∂ βµ



Entropy and Pressure in Grand Canonical Ensemble

• Let us calculate the entropy from Gibbs’ formula:

35

( )BS k P log Pχ χ
χ

= − ∑

( )
BS k P log E Nχ χ χ

χ

 = − − Ξ −β +βµ ∑

( )
BS k log E N = − − Ξ −β +βµ 

⇒

⇒

⇒

( )
BTS k Tlog U N= Ξ + −µ( ) 1

Bk T −β =
Recall:

Recalling Euler’s 
theorem (slide 7):

The macroscopic 
number of molecules

( )
BpV k Tlog= Ξ



Take Home Messages

• Statistical Mechanics is all about deriving expressions 
for familiar macroscopic thermodynamic variables from 
microscopic laws (e.g. Schrödinger’s equation or 
Newton’s law of motion)

• Two fundamental postulates:
– Principle of equal weights…
– Ergodic hypothesis…

• Averaging makes use of ensembles. Commonly used:
– Microcanonical (N, V, E)
– Canonical (N, V, T)
– Grand canonical (µ, V, T)

• Macroscopically, all ensembles give “same answers”…

36
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